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Executive Summary

High-end computing (HEC) is requisite for solving our nation’s most important scientific
and engineering problems, and has become increasingly vital to the mission of the national
security community [1]. As the scale and complexity of HEC systems continues to grow, the
impact of faults and failures will make it increasingly difficult to accomplish productive
work using traditional means of fault-tolerance [2, 3]. Further, the challenges of integrating
large complex heterogeneous systems are increasing to the point where the “stabilization”
period consumes a significant portion of the lifetime of those systems [4, 5]. As a
consequence of these two markedly disturbing trends, it will be necessary for the HEC
community to identify innovative means for efficiently and affordably performing
productive work on systems encountering frequent, persistent and erratic errors, many of
which will be undetectable by existing system monitoring solutions. Resilience meets these
profoundly daunting and ever increasing challenges. To ensure the continued viability of
the largest, most powerful, leading edge computing systems will require standards based
solutions. These solutions must efficiently and dynamically guard and preserve
information, computation and data movement in the presence of faults and failures arising
from complex system interactions and dependencies among platform hardware and
software components, the system workload, and the physical environment.

The goal of HEC resilience is to enable effective and resource-efficient
use of computing systems at extreme scale in the presence of system
degradations and failures.

At the highest level, high-end computing is the process by which data is transformed into
information through computation. Resilience facilitates this critical transformation process
by accepting that the underlying hardware and software that comprises a system will be
unreliable. In order to succeed, resilience assumes a new perspective in which uncertainty
about the state of the system plays an important role in managing that system. Resources
traditionally focused on maintaining a known and desirable system state are instead
focused on end-to-end fidelity of data, computation, and data movement. Resilience is
concerned with reliability of information in lieu of, or even at the expense of, reliability of
the system. This novel approach to fault-tolerance is necessary to address the two-fold
challenge of decreasing system reliability, because of increasing scale, and decreasing
certainty about the operational state of the system, because of increasing complexity. The
resilience community proposes to address these challenges in five focused but overlapping
thrust areas: theoretical foundations, enabling infrastructure, fault prediction & detection,
monitoring & control, and end-to-end data integrity. To manage this prodigious scope, a
successful program of resilience research will require coordinated, multi-disciplinary
undertakings in each of these thrusts areas. This requirement forms the justification of a
call for a national effort in resilience.
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Background and Introduction

Recent trends in high-end computing (HEC) system design have clearly indicated future
increases in performance, in excess of those resulting from improvements in single-
processor performance; will be achieved through corresponding increases in system scale,
i.e., using a significantly larger component count. As the raw computational performance of
the world’s fastest HEC systems increases towards the next-generation exascale capability,
the number of computational, networking, and storage components will grow enormously.
To put this in today’s terms, presently the largest petaflop-plus machine [6], Jaguar from
Oak Ridge National Laboratory with a peak speed of 2.33 petaflops, has over 250,000 cores
[7]. Similarly, the first petaflop supercomputer, Roadrunner, deployed at Los Alamos
National Laboratory, has over 122,000 cores with a peak speed of 1.38 petaflops.
Furthermore, it is anticipated that an exascale machine will reach the 100-million core and
perhaps even 1-billion cores [8].

With only very few exceptions, the reliability and availability of recent HEC systems have
been lower in comparison to the same deployment phase of their predecessors. Based on
personal communication with various HEC center personnel and based on publicly
available statistics (Table 1), the overall system availability of currently operational HEC
systems is roughly above 96% and below 99%, not including the time spent on
checkpointing and recovery. It is important to note that the availability of a system is a
measure of how often components are in a usable state. The productive runtime is
represented as runtime efficiency and depicts the amount of useful cycles that are applied
to solving a problem and does not include checkpointing. The numbers combine as a
product to produce the faction of useful cycles obtains on a given system.

In some cases, the overall system mean time between failures (SMTBF) is under two hours.
Previous work similarly suggests a system mean time to failure (SMTTF) constraint of 5-6
hours, or 4 failures per day, for current HEC systems [9]. The most common reported
sources of failure in large-scale distributed systems are processor malfunction, memory
errors, and storage failures.

Installed System Processors | SMTBF | Measured | Source
2000 ASCI White 8,192 40.0h 2002 [10]
2001 | PSC Lemieux 3,016 9.7h 2004 [11]
2002 | NERSC Seaborg 6,656 351.0h 2007 [12]
2002 ASCIQ 8,192 6.5h 2002 [13]
2003 Google 15,000 1.2h 2004 [14]
2006 | Blue Gene/L 131,072 147.8h 2006 [15]
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Table 1. Publicly Available Past and Current HEC System Reliability Statistics

In general, parallel applications run faster (lower wall clock time) in comparison to their
single threaded counterparts. However, when substantially increasing the number of
nodes located within an HEC system and assuming theoretical linear scalability for
applications, application completion times do not necessarily decrease proportionally. In
fact, it has been shown that (Figure 1) [16] the opposite is true - while application
completion time initially decreases as nodes are added, at some critical point this value
begins to rise substantially due to the increased likelihood of reliability issues stemming
from the additional computational units.

As a result, HEC centers may artificially set allowable job run time for their HEC systems to
very low numbers in order to require a scientific application to store intermediate results,
essentially a forced checkpoint, as insurance against lost computation time on long-running
jobs. However, this forced checkpoint itself wastes valuable computation time and
resources as this checkpoint time does not produce additional scientific results yet does
consume computation time and other resources.

Expected Completion Time (Hours)
o
1

1D 1 a1l 1 441 aaaal 1 411l 1
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Figure 1. Application Completion Time vs. Number of Nodes

In contrast, the demand for HEC system availability has risen dramatically with the recent
trend toward capability computing, which drives the race for scientific discovery by
running applications on the fastest machines available while desiring significant amounts
of time (weeks, months, or more) without interruption. Looking ahead, the expected
growth in HEC system scale poses significant challenge for system and application fault
resilience.
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A recent study [17] estimates the SMTBF for a next-generation extreme-scale HEC system.
Extrapolating from current performance, scale, and overall system mean-time to failure
(SMTTF), it suggests that the SMTBF may fall to only 1.25 hours of useful computation on a
1 PFlop/s (101> floating point operations per second) system. This study also estimates the
overhead of the current state-of-the-art fault-tolerance strategy, checkpoint/restart, for a 1
PFlop/s system, showing that a computational job that could complete in 100 hours in a
failure-free environment will actually take 251 hours. What this analysis implies is
startling: more than 60% of the processing power (and investment) on these extreme-scale
HEC systems may be lost due to the overhead of dealing with reliability issues, unless
something happens to drastically change the current course of system reliability.

This paper takes an in depth look at the current state of the HEC resilience community with
the aim of identifying key research areas where investment should be made to reach the
goal of more resilient HEC systems of tomorrow. We begin by outlining some frequently
used terms and then take a detailed look at the history of reliability, fault-tolerance, and
resilience in the HEC arena. We then outline five key research thrusts which are
interrelated and contain a great deal of overlap. This necessitates a global view of the
problem of resilience to best assign resources and calls for a government-lead initiative in
this area. We identify some existing research in these thrusts and point to serious gaps that
impede the national HEC goals. Finally, we conclude with a look the level of impact action
or inaction will have, positive or negative, on the future of HEC.
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Purpose and Scope

The purpose of this document is to identify the critical research and development areas required
to achieve the goal of resilience within High-End Computing (HEC). We assume the need for
HEC systems will continue to outpace their availability. Further, left unchecked, these systems
will ultimately become unusable due to hard and soft errors, and could potentially result in
errors in the data that might propagate to incorrect decisions or actions. Usability will be
threatened and ultimately we question whether the high costs of providing resilience in both
hardware and software will provide acceptable returns.

This document does not address breakthrough reliability technologies that would fundamentally
change the resilience field. Per component hardware reliability has been remarkably consistent
over the history of the HEC industry, so we assume an evolution of hardware reliability and an
incremental awareness of application resilience. While several HEC vendors are looking to
address reliability at the hardware level, the costs are proving to be staggeringly high in both
money and power. This document assumes that while new reliability technologies will continue
to be integrated into next generation HEC systems, these technologies will not be sufficiently
disruptive to precipitate radical or wholesale changes in the resilience needs of platforms and
applications.
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Frequently Used Terms

The following is a list of terms and associated definitions that occur frequently in standard
literature pertaining to computer system reliability:

Algorithm-Based Fault Tolerance (ABFT) - Fault tolerance technique for computational
algorithms designed to either ignore failures, and still deliver an acceptable result, or to
implicitly recover at low cost using computation. A major requirement is that the
underlying system (hardware and software) supports degraded operation (see Degraded
Modes).

AMTTFE - “Application Mean Time to Fatal Error” is a measure of the likelihood that an
application running on a particular set of platform components will run without error or
interruption for the duration of its runtime.

Application - Codes run by users that apply programming models to implement numerical
methods with the intended function of transforming data and/or solving equations to give
accurate information about real phenomenon.

Application Monitoring - The act of monitoring the progress of an application. Different
fidelity can be achieved through the combination of internal and external application
monitoring. Application monitoring is usually used to identify if an application is stalled,
having problems making forward progress at an acceptable rate, and/or how far along in
its computation it has progressed.

Byzantine Fault Tolerance - The process of masking any kind of failure, including those
caused by soft errors. It expands traditional fault tolerance to include malicious failures,
such as the Byzantine generals problem [18].

Checkpoint/Restart (C/R) - A fault-tolerance technique whereby application/system
state is saved in intervals to persistent storage, which is typically a network shared file
system with redundancy for robustness. Upon failure, the previously saved state is
restored, typically by restarting failed applications. Progress between the last checkpoint
and the time of failure is lost. Global C/R coordination is required to ensure consistency.
The efficiency of C/R depends on checkpoint and restart duration, interval, and MTTF.
Many applications checkpoint after computational phases, such as a set of iterations, in
order to be able to restart from an intermediate result. In some specific situations, system
software solutions offer transparent mechanisms. C/R has been the state of practice for
HEC fault tolerance for decades. See also Checkpoint/Restart, Diskless.

Checkpoint/Restart, Diskless - A subset of C/R techniques that save state in memory
rather than persistent long-term storage. This usually has tradeoffs with respect to latency,
bandwidth, capacity, contention and most importantly reliability as the memory often
resides in a compute resource susceptible to failure where the checkpoint could potentially
be unavailable for retrieval. Commonly, techniques utilize some type of parity or raid-like
mechanism to ensure correctness and redundancy and utilize a remote node’s memory,
allocated for this purpose.
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Degraded Modes - System states in which operation is abnormal or defective but does not
terminate.

Dependent Failure - An event in which one or more components lose the ability to
perform their intended function because of the failure of some other component on which
they are dependent for correct operation.

ECC - An “Error Correcting Code” is redundant data that is added to a data stream to allow
the recipient of that data to detect and correct some number of erroneous bits, where the
number of correctable bits is determined by the method and the degree of redundancy.

Error - The condition created by a fault that causes system hardware or software to stop
performing its intended function or to perform it incorrectly and may lead to a failure (see
Fault and Failure).

Error Detection - The process of accurately determining when a system (i.e., platform or
application) has ceased to perform its intended function or is performing it incorrectly.

Error Latency - The time elapsed between the point at which the system stops performing
its intended function correctly and ceases functioning entirely (see Error and Failure).

Error Propagation - The process by which one or more system errors degrade the state of
the system until that system ceases to operate (see Error and Failure).

Fail Silent Violation - Instance of faults that leave a system operating in an abnormal or
defective manner such that it is creating errors.

Failure - The point in time at which the system hardware or software ceases functioning
as a consequence of one or more errors (see Fault and Error).

Fault - An abnormal condition or defect in system hardware or software that may lead to a
failure (see Error and Failure).

Fault, Intermittent - A system fault resulting inconsistently or erratically from conditions
on the system that may not be repeatable.

Fault, Permanent - A system fault consistently resulting from conditions on the system
that are repeatable.

Fault, Transient - A system fault resulting inconsistently or erratically from conditions in
the environment that are not repeatable.

Fault Activation - The process by which an abnormal condition or defect in the system
causes that system to begin performing its intended function incorrectly or not at all (see
Fault and Error).

Fault Prediction - The process of accurately predicting the occurrence of an abnormal
condition or system defect before it causes an error condition in which they system is no
longer function correctly.

Fault Tolerance - The ability of a system to continue performing its intended function
properly in the face of transient, intermittent, and permanent faults.
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Fault-Tolerant Message Passing Environments - A specific class of message passing
programming model implementations that provide high availability for a distributed
application and is responsible for messaging and process/task management. Applications
are able to adapt at runtime as long as this software layer is able to detect, isolate, and
signal failures.

Fidelity - A notion of how accurate an application or platform is. Often used as “tunable
fidelity” in the sense of a configurable amount of accuracy presumably in exchange for
something (power, performance, monetary cost, etc).

Hard Error - An error resulting in the permanent malfunction of a device.

Log-Based Failure Analysis and Prediction - A technique used for prediction and root
cause identification usually utilizing statistical methods. Most work relies on event logs
made public via the USENIX Computer Failure Data Repository at http://cfdr.usenix.org.

Message Logging (ML) - A technique that saves all parallel application messages in a log.
A failed application part is restarted and its input is replayed to restore state. Surviving
parts are not affected. ML is only applicable to deterministic applications. It may be
combined with C/R to avoid playback from start and to enable uncoordinated C/R protocol
using the message log for consistency. The efficiency of ML depends on the introduced
runtime overhead, the MTTF, and if any C/R is used.

Middleware - The set of software that interfaces between the user applications and the
underlying operating system and hardware. Examples include runtime systems, libraries,
and device drivers.

Mis-corrected Error - This is an error that is one of the potential results of SDC. In this
case the ECC correct what it thinks is an error in the data, incorrectly.

Multi-Component Failure - An event in which an error in a single component of hardware
or software is responsible for the failure of multiple other components in the system.

Performability - A measure of the rate of computation work performed on a system that
includes consideration of both the performance and reliability of the system.

Platform - The integrated set of hardware components (nodes, interconnect, memory, etc)
and software infrastructure (operating system, libraries, compilers, etc) designed with the
intended function of running one or more applications.

Proactive Fault Tolerance - keeps applications alive by avoiding failures through
preventative measures, such as rejuvenating the state of the system to remove latent faults
that could cause an error later or migrating application parts away from components that
are “about to fail” using early failure indications.

Programming Models or Programming Paradigms - A fundamental “style” of computer
programming that differs based on the abstractions used to represent programs in that
paradigm. Well-known abstractions include objects, functions, and variables.

Provenance - Refers to the history or source of data in a computation. In the context of
resilience, knowledge of provenance is necessary for the recovery of a correct system state
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following an error by providing a record of hardware and software components with the
potential to have been corrupted as the error propagated.

QoS - “Quality of Service” is a measure of the ability of a system to maintain an acceptable
level of service where that level of service may be different for different platform,
applications, workloads, or users.

Reliability - A measure of “the ability of a system or component to perform its required
functions under stated conditions for a specified period of time.” [19]

Recovery Oriented Computing - An approach to fault tolerance focused on minimizing
error latencies (i.e., “fail quickly”) and getting things running again quickly after a failure.
This approach is in contrast to resilience that attempts to keep applications running
without the need for stopping and restarting.

Resilience - The ability of a system to keep applications running and maintain an
acceptable level of service in the face of transient, intermittent, and permanent faults.

Silent Data Corruption (SDC) - “SDC occurs when incorrect data is delivered by a
computing system to the user without any error being logged.” [20]

Single Fault Violation - Instance of faults that occur simultaneously in multiple locations
as a result of a single event or an interaction of multiple events.

SMTBF - “System Mean Time Between Failures” is a measure of the reliability of a system
that is the operational time of a system during some period divided by the number of
failures that have occurred during that period.

Soft Error - A change in the "state of a logic device" that "does not reflect a permanent
malfunction of the device." [21]

Soft-Error Fault Tolerance - A type of fault tolerance that focuses on techniques for
masking software component failures or data corruption, as opposed to handling
permanent device malfunctions and hard fails (see Soft Error and Hard Error). These error
types include transient failures that are only active as long as the faulty software
component is not rebooted or the corrupt data location is not overwritten.

System - The combination of a given application or set of application (i.e., an application
workload) and a given platform on which they are running.

Undetected Error - This is an error that is one of the potential results of SDC. The ECC
and the data packet have both have errors that when combined are not detected and
passed to the next device.

10
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Historical Perspective

In the following, the evolution of resilience technologies for HEC over the last 3 decades is
summarized, examples are given, and important milestones are briefly described. The
current state of research and practice is shortly illustrated and future demands are
discussed.

Evolution of Resilience Technologies

Checkpoint/restart (C/R) has been the state of practice for HEC fault tolerance for
decades. For example, the 1982 4-processor Cray X-MP [22] had optional fast solid-state
drive (SSD) checkpoint storage. The 1988 follow-on 8-processor Cray Y-MP and the 1985
6-processor IBM 3090 [23] had the same feature. As processor counts increased, systems
had more distributed properties. C/R latency grew with the move from direct-attached
storage (DAS) to network-attached storage (NAS). For example, the 1992 2048-processor
Intel Paragon XP/S [24] had compute nodes without storage and dedicated [/0 nodes with
DAS or NAS. With the advent of cluster computing in the mid-to-late 1990s, compute-node
storage became popular. For example, the 2000 8,192-processor ASCI White was an off-
the-shelf cluster composed of 16-processor IBM RS/6000 [25] nodes, each with 20GB DAS.
Although compute-node storage permits checkpoint caching, it was rarely used in practice.
The concern over disk reliability forced DAS out of compute nodes in the early 2000s. For
example, since 2004, the IBM Blue Gene [26] and Cray XT [27] series embrace the
massively parallel processing (MPP) architecture of the early 1990s with I/0 nodes and
NAS.

Application-level C/R has been the predominant HEC fault tolerance method for decades.
Many applications checkpoint after computational phases to be able to restart from an
intermediate result, like the 1996-now Community Climate System Model (CCSM) [28].
Since 2004, the C3 [29] C/R toolkit offers compiler-assisted transformation of any MPI
application to become self-checkpointing and self-restartable.

System-level C/R first appeared in 1995 with libckpt [30], a portable Unix C/R tool with
transparent, incremental, forked and user-directed checkpointing of processor state,
process stack and data. In 1996, CoCheck [31] added coordination for MPI applications to
achieve consistency by assuring global recovery lines. In 1997, Condor [32] added
checkpointing of shared library code/data, open files state, signal handlers and pending
signals. Since 2003, Berkeley Lab Checkpoint Restart (BLCR) [33, 34, 35] offers
transparent process C/R in Linux that additionally includes process identifiers. BLCR is
integrated with LAM/MPI [36, 37] and Open MPI [38] for transparent C/R of MPI
applications.

The concept of diskless C/R was first developed in 1997 [30]. It offered transparent,
incremental, forked and user-directed checkpointing of MPI applications to the memory of
dedicated or spare nodes with parity encoding for robustness. A 1998 prototype [39]
added scalable checkpointing to neighbor compute nodes. In 2004, transparent diskless
C/R with checkpoint replication for robustness was added to the Charm++/AMPI [40]
framework, which also supported dynamic load balancing. The Scalable C/R (SCR) library

11
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[41], released in 2009, offers local and neighbor diskless C/R with parity encoding or
replication.

Fault-tolerant message passing was first available with the 1993 PVM 3 [42], which
survived n-1 process failures and offered dynamic reconfiguration. Starfish [43],
developed in 1999, was the first fault-tolerant MPI. Its scalability was limited due to the
use of the Ensemble [44] group communication system. The 2001 FT-MPI [45] provided
more scalability. It also extended the MPI specification with fault tolerance features that
are currently discussed for the MPI-3 standard [46].

In 1992, Manetho [47] offered the first message logging (ML) solution with antecedence
graph maintenance, uncoordinated checkpointing, and sender-based ML. Its recovery
scheme offered limited rollback, fast output commit and low overhead. The 1999 Egida
[48] provided ML for MPI applications with a specification language to automatically
synthesize a ML protocol implementation. In 2006, MPICH-V [49] added two advanced ML
protocols: (1) Chandy Lamport [50] and (2) a more scalable Blocking Chandy Lamport.

Algorithm-based fault tolerance (ABFT) first emerged in 1984 for matrix operations in
systolic arrays [51]. It relied on computing encoded matrices to allow for “offline”
recovery, i.e., after the computation. Re-emerged in 2006, an extension [52] offered
“online” recovery, i.e.,, during the computation. Related research in 2005 focused on
“naturally” fault-tolerant algorithms [53] based on a composition of local algorithms, e.g.,
chaotic relaxation [54]. A 2007 extension [55] offered ABFT for parabolic heat transfer
problems that overcomes the issue of irreversibility in time by numerically reconstructing
lost data.

Developed in 2007 and 2008, two prototypes [56, 57] offered a new proactive fault
tolerance approach through migration of application parts (virtual machines or processes)
away from components that are “about to fail” using simple threshold triggers on
environmental monitoring sensors.

Log-based failure analysis and prediction has been a very recent effort. For example,
the 2007 hPREFECTSs failure prediction framework [58] explored log entry correlations
with a more than 76% accuracy in offline prediction and more than 70% accuracy in online
prediction. Also, in 2008, Sisyphus [59] offered a classification scheme for syslog messages.
It is able to localize 50% of faults with 75% precision, corresponding to an excellent false
positive rate of 0.05%.

A 2008 Byzantine fault tolerance solution [60] for HEC Grids offered an automated
mechanism for running parallel applications in a replicated fashion with reasoning over
output validity.

For soft-error resilience parity memory was deployed in HEC systems until the early
1980s, such as in the 1977 Cray-1 [61], and then replaced by more resilient single-error
correction (SEC) double-error detection (DED) error correcting code (ECC) memory, e.g., in
the Cray X-MP. Reports of bit-flips in onboard caches in the 2002 ASCI Q system [62]
forced processor vendors to move from parity to ECC for caches and registers, such as in
the AMD Opteron [63] deployed in Cray’s XT series.

12
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Current State

With a few exceptions, today’s HEC systems assure fault tolerance in the same way since
the early 1990s. Application-level C/R with NAS is the predominant HEC fault tolerance
method for hard errors, and ECC throughout the memory hierarchy is the prevalent HEC
soft error resilience technique. System-level C/R is employed at a few HEC centers, e.g.,
using BLCR. However, none of the current petascale HEC centers support system-level C/R.
Diskless C/R has only recently begun being used in production HEC systems at LLNL (SCR
library). Message logging, algorithm-based fault tolerance, proactive fault tolerance and
Byzantine fault tolerance are not available in production HEC systems. Log-based failure
analysis and prediction is sparsely used in root cause analysis on large-scale machines. The
current state of practice in HEC resilience is largely disconnected from the described
current state of research.

Recent efforts providing an insight into HEC resilience showed that some HEC system
failures can be anticipated by detecting deteriorating system health through hardware
monitoring (fan speeds, temperatures, disks error logs) [64]. Other work focused on
capturing the availability of large-scale systems using combinatorial and Markov models
and on comparing these results with statistics from large-scale U.S. Department of Energy
(DOE) installations [65, 66]. Unfortunately the health data collection and processing
outlined in these studies will not perform efficiently on large-scale HEC systems, so the
existing work will need substantial research investment to leverage it effectively.

In contrast to HEC platforms used in research, large-scale commercial IT installations
experience interpolated fault rates similar to those expected of next-generation HEC
systems, e.g, Google’s SMTTF of 1.2 hours (Table 1). However, their fault-tolerant
middleware hides these failures from customers, while successfully maintaining end user
service provision [67].

Future Demands

As HEC systems continue to increase in size, their system mean time to failure (SMTTF)
decreases dramatically due to increasing component counts resulting in more frequent
system-wide interruptions [2, 68]. The solution, up until now, has been to increase
component reliability. However, this is not sustainable. No vendor will/can build at a
reasonable cost a component (processor, memory module, or network interface) that
doesn’t fail in 10-20 million hours (1370-2740 years) as needed for a system with
1,000,000 components and a desired MTTF of 12-24 hours.

Single event upsets (SEUs) and single event multiple upsets (SEMUs) [69], i.e., single and
multiple bit flips caused by a single natural high-energy radiation strike [70, 71], are the
primary source of soft errors in chip memory and logic [72, 73]. Itis expected that SEU and
SEMU vulnerability will further increase with shrinking nanometer technology [72, 73, 74].
Detectable unrecoverable errors (DUEs) caused by radiation-induced soft errors will very
quickly become the predominant source of interruptions, while silent data corruption
(SDC) incidents will initially be rare, but occurring, events [75, 72].

Recent investigations [76, 77] revealed that C/R efficiency, i.e., the ratio of useful vs.
scheduled machine time, can be as high as 85% and as low as 55% on current-generation
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HEC systems. With increasing error rates, increasing aggregate memory and not
proportionally increasing 1/0 capabilities, traditional C/R via NAS is becoming less efficient
and soon obsolete (at 50% efficiency).

Future-generation extreme-scale capability HEC systems will experience more frequent
failures due to growing scale and shrinking nanometer technology. Resilience has to
become an urgent priority to ensure that these leadership computing systems operate at an
acceptable efficiency and productivity. In addition to exploring advanced resilience
techniques, a sustained software research and development effort is needed for the full life
cycle of resilience solutions as a software product, including basic research, prototyping
and testing, technology integration and production deployment.
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Key Areas for Future Research, Development, and Standards Work

The scope of the resilience challenge is immense in terms of both the number of tasks to be
accomplished and the level of coordination across research communities required to
accomplish them successfully. Figure 1 illustrates an approach to organizing the key
challenge areas into five overlapping thrusts, each of which includes multiple research
topics. The areas of overlap in the thrust diagram indicate points at which research
activities will require some level of coordination in order to develop and standardize
interfaces. In addition, the placement of the individual tasks within the thrusts, though
mainly notional, is intended to convey the breadth and diversity of coordination required.

FaultiPrediction!& Detection

; Anom;Iy
detection

Fault
Injection
Forward
Migration &

Theoretical Enabling
Foundations Infrastructure

Degraded
Modes

Monitoring & Control

Platform Knobs 'Quality of Service

Figure 2. The five key areas of concern for resilience are overlapping and largely multi-
disciplinary, thus motivating the need for an organized national effort to address the issues.

Notice that the first four thrusts are intentionally organized around the central thrust of
end-to-end data integrity, which is the nucleus of HEC resilience. The sub-sections that
follow give overviews of each of the thrust areas. They touch on some of the primary
research topics and providing more information about the state of the art and gaps
associated with the five thrusts.
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Thrust #1: Theoretical Foundations

The topic area of theoretical foundations is primarily concerned with understanding “how”
and “why” failures occur in HEC systems. This is a very broad category that is concerned
with correctly describing the mechanisms and characteristics of failure from the level of
system components and infrastructure down to the level of logic on the circuit. It
addresses the compute platform as well as applications and must pay particular attention
to interactions between platform and application in fault activation and error propagation.

Metrics & Measurement

Lord Kelvin is famously quoted as saying "If you cannot measure it, you cannot improve it.”
This universal truth necessitates a body of basic research in HEC resilience with respect to
metrics and measurement. Standardized metrics are a critical enabler to improving HEC
resilience. The absence of agreed definitions and metrics has obscured meaningful
discussion of the issues involved and hindered their solution. Furthermore, fair and
meaningful reliability comparisons between systems are impossible because of different
hardware and software architectures, failure modes, and system health and failure
reporting mechanisms. A reliability and availability metrics standard for HEC is needed as
well as scalable, non-intrusive system health data collection and processing. Multiple
groups have published on this topic recently [78, 79, 80]; the time is ripe to form a multi-
agency, multi-vendor committee to publish a standard for measuring HEC resilience, and
produce a reference implementation. Given proper priority, we believe this could be
completed within two years, and would be a critical enabler for quantifiable improvements
in HEC resilience.

Simulation & Emulation

One area of growing concern in the HEC community is the potential for increasing error
latencies as the interval of time increases between fault activation, when a fault first
compromises the end-to-end integrity of a calculation, and failure, when the error is
detected. During this time the system is operating in a degraded state where performance
and correctness of running calculations may be compromised, but the consequences of the
error have not yet been detected. Unfortunately, the error latency is unmeasurable on any
practical system [81] therefore must be modeled by simulation and emulation using
methods such as fault-injection. However, the duration of the period of error propagation
could exist on time scales ranging from nanoseconds to weeks or more for extreme scale
systems, which makes the simulation problem very challenging.

Formal Methods

Formal methods are concerned with provability of correctness, particularly in the presence
of Byzantine faults. In general, these sophisticated mathematical methods can be used to
demonstrate that hardware and software architectures are resilient to error by design, and
can be used in combination with knowledge of provenance as a rigorous guarantor of end-
to-end data integrity. More research should be done in application of these types of
methods to systems at extreme scale.
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Statistics and Optimization

These two broad areas of research apply specifically to resilience in the context of creating
a dynamically controlled feedback loop in which the system is monitored and corrective
action is taken in response to the detection or prediction of errors. In particular, the
resilience mechanism is a stochastic optimal control loop where the system inputs (i.e.,
faults) are governed by statistical processes and the governing equations and constraints
are dictated by the power, performance, and reliability requirements of the system. More
research is needed to understand how these principles are applied in real-time to complex
systems at extreme scales.

Efficiency Modeling and Uncertainty Quantification

There are two broad requirements that fall under this research topic: (1) a theoretical or
empirical model quantifying system efficiency in terms of power, performance, and
reliability; and (2) a statistical model of quantifying uncertainty with regards these three
system parameters (for example, see [82]) to enable analysis of underlying stochastic
processes. Research in this area is critical, in conjunction with formal methods, for
developing a QoS infrastructure for resilience that is able to provide tunable fidelity by
guaranteeing a certain level of performance and correctness with a certain degree of
certainty in the face of faults that are fundamentally statistical in nature.

Thrust #2: Enabling Infrastructure

The topic area of theoretical foundations is primarily concerned with understanding “how”
and “why” failures occur in HEC systems. This is a very broad category that is concerned
with correctly describing the mechanisms and characteristics of failure from the level of
system components and infrastructure down to the level of logic on the circuit. It
addresses the compute platform as well as applications and must pay particular attention
to interactions between platform and application in fault activation and error propagation.

The topic area of enabling infrastructure is primarily concerned with the hardware and
software components that are used in conjunction to create a more reliable HEC system.
This is an extremely broad category that includes programming languages and models, RAS
systems, system software, middleware (such as libraries), and tools in general. These
components often need to cooperate to identify faults and maintain the stability of the
system to keep the application running without interruption.

Programming Models and Languages

The burden of addressing resilience in the application level is high and it is not clear that
the average domain scientist is best equipped to implement resilient codes. Just as
programming languages and models have emerged to ease parallel programming
complexities while providing performance, so too must we see new models to provide
application resiliency. The DARPA HPCS effort has focused on creating languages that will
provide high productivity solutions while still providing performance. We need similar
efforts with respect to reliability solutions via languages and models.
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Most HEC applications communicate via the Message Passing Interface (MPI). MPI is
historically not tolerant to faults and there have been several solutions that looked to
address this with varying levels of conformance to the standard. The MPI Forum is
currently meeting to hopefully provide for a fault tolerance standard in the MPI 3.0
specification but currently users have no viable, standard, portable options. Other runtime
systems, such as HARNESS [45], can enable fault tolerance in MPI applications, using FT-
MPI [83], which survives the crash of up to n-1 processes in an n-process job; it is, however,
the responsibility of the application to recover the data-structures on the crashed
processor.

One successful solution in the research community has been Charm++ [84] that, through
use of object-based-virtualization features, has enabled the development of various fault
tolerance techniques for parallel applications on large systems. These applications can be
written in Charm++ or in MPI, which is supported by Adaptive-MPI [85]. Charm++ can
restart an application from a checkpoint, with the advantage that the restart can be done
with any number of processors [86], since Charm++ decouples the application's data
decomposition from the configuration of the underlying physical machine where it is
executed. An extension of this scheme is a memory-based checkpointing [87] (see
Checkpointing, Diskless), which is much faster because all the saved state is kept in remote
processors’ memories, not in disks. Clearly there exists a set of tradeoffs that must be
managed.

Reliability, Availability and Serviceability (RAS) Systems

RAS systems make up a vital component in today’s HEC systems. They are predominantly
deployed on the larger systems that are most interested in high availability of the compute
resources. RAS is a cross-cutting topic that is certainly part of the enabling infrastructure
but we will discuss this topic in Thrust #4 (see Thrust #4: Monitoring & Control).

System Software

HEC (and particularly HPC) systems have historically been performance driven. Most HEC
systems use Linux, an operating system intended for servers or desktop scientific
computing. Strides have been made to improve the performance of Linux for HEC systems
over the past decade but the reliability is still largely untouched. At extreme scale the HPC
community is often turning to light-weight operating systems (Cray’s Catamount and IBM’s
CNK, for example) to improve performance.

Fundamentally very little has been done to harden operating systems and provide a robust
set of interfaces to identify faults, communicate errors, and circumvent failures. The
predominant mode of operation has remained to simply abort in the event of a problem.
The resilience community could greatly benefit from standardization efforts for interfaces
to better handle errors and provide means to continue correct operation, possibly in a
degraded mode.
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Middleware, Libraries, and APls

Today, the line between libraries and programming models has blurred sufficiently that
there is considerable overlap. Many application scientists rely on scientific libraries for
highly tuned, optimized algorithms. Examples include mathematical libraries that provide
linear algebra routines, data format libraries (such as HDF), and compression libraries.
These types of libraries are highly tuned for performance, but historically not for reliability.
There are many opportunities for the data integrity to be ensured at the library level
entirely transparent to the user. Additionally there is a need for novel approaches that
address hard errors at the library level.

Checkpointing libraries, on the other hand, are specifically intended to address application
reliability and fault tolerance in the presence of hard failures. These libraries could benefit
significantly from approaches that ensure the data integrity of checkpoints so that when
applications “roll back” to a previous state there is high confidence that the state being
reloaded has not been corrupted.

Tools

While a wealth of tools exist and continue to be developed to analyze the performance of an
application of a platform, there exists very little in the way of resilience-related tools.
Predominately the tools available today are used by system administrators to monitor the
“health” of a system. These often look at metrics like voltages, fan speeds, temperature, and
various statistics related to the resource manager (queue depth, wait time, average
turnaround time). Experts are left to interpret this data and piece together an overall big
picture of the system.

There exists a large gap between the application users and the system administrations with
how they view the stability, usefulness, and success of HEC systems. Existing tools are not
adequately capturing the “user experience” and cannot account for application stalls,
hangs, transient errors, and abnormal terminations. Not only is there a need for these tools
but there is further need for tools that build upon these to mine the data to determine the
reliability of deployed systems. This information might be used to set optimal checkpoint
intervals, drive purchasing policy, and generate more accurate application utilization
graphs.

Cooperation and Coordination Frameworks

HEC resilience requires coordination among multiple layers (rather than improvement in
or insertion of a single layer) [88, 89]. Currently today very few pieces of the software
stack coordinate a response to a perceived fault. For example, if a node were to crash
where a large application was running one might expect: the MPI layer would notice this,
request from the resource allocator an additional node in the allocation, transparently
restart the failed process on the new allocation, reload from the most recent checkpoint,
and resume the computation - all entirely transparent to the application. Today, not only
does this not exist but it cannot exist without standardized interfaces for brokering this
type of interaction with different subsystem components.
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Thrust #3: Fault Prediction & Detection

Fault prediction and detection are fundamental to HEC resilience, and there are many
challenges to doing both at scale. In particular, the distinction between platform and
application errors must be better understood in order to focus attention on those system
faults that actually lead to application errors, as opposed to faults that do not impact the
performance or integrity of the computation, as illustrated in Figure 3. More research is
also needed to understand the implications of error latency, the variable and immeasurable
duration of time between fault activation and failure, for both prediction and detection.

Platform Application System

Generate

[ |
Corrupt Exit
Error o Error Wrong
Answer

¢ Detect

¢ Detect

Interrupt

= Error Propagation = = = Fault-tolerance Barrier = = = Resilience Barrier

Figure 3. Comparing the resilience approach to that of traditional fault tolerance in terms of
the progression of faults to failures on a system. Assume fault, error, and failure (exception)
“events” are associated with both the application and the platform on which it runs. Since
exit status for the system is the same for right and wrong answers, fault tolerance forms a
barrier to prevent faults in either the platform or application from activating. Resilience, on
the other hand, focuses exclusively on protecting the application.

Most contemporary failure prediction techniques involve SMTBF approximation and post-
event analysis of system logs [90, 91]. On-line analysis based on individual compute node
reliability in conjunction with system health monitoring is needed for near-real-time
reliability awareness of HEC system resource and runtime system management.

In light of this, the goals of accurate fault prediction and detection for the system should be:
(1) to minimize the time elapsed between the activation of a fault and the detection of the
resultant error; and (2) to maximize the time elapsed between the prediction of a fault and
subsequent activation. Research is needed in both of these areas, with an emphasis on
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quantification of the rates of false positives and false negatives and with strategies to
minimize those false indicators.

Statistical Analysis

Given that large-scale systems are composed of large numbers of components that are
intended to be identical within manufacturer tolerances, statistical analysis is recognized
as a promising technique for failure prediction and detection. Application of such
techniques in this area is not straightforward as each component is subject to different
physical and computational environments (e.g, running different code). Additionally, given
the number of components, the number of possible attributes to be compared, and the
frequency of data collection, scalable techniques are required. Further, the relationships of
events in time must be considered, and noise and uncertainty in the measurement of
quantities associated with the system'’s state must be handled.

Research areas include: scalable methodologies, multi-variate methodologies, time-series
and event correlation methodologies and techniques for handling noise and non-uniform
backgrounds, data fusion of textual and numerical data, uncertainty quantification.

Machine Learning

As a system is collecting data on application and platform performance, the resilience
infrastructure should have the ability to respond to known fault indicators and recognize
new patterns of system anomalies that indicate a degraded system state that have the
potential to impact the end-to-end integrity of a computation. Research is needed in ways
to best apply techniques of machine learning to recognize and categorize patterns of failure
quickly and efficiently from a very large and complex set of indicators. The machine
learning problem becomes a data intensive computing problem with the end goal being a
capability for doing highly accurate, real time anomaly detection.

Anomaly Detection

Similar to statistical analysis, anomaly detection is recognized as a promising technique,
since components are expected to behave alike under the same usage models. In addition
to the issues mentioned above, anomaly detection suffers from the additional impediment
that the events of interest in the test data (e.g., failures) are rare and hence drawing
conclusions about causal relationships is difficult.

Some of the research areas include: statistical techniques, building useful classifiers using
sparse or incomplete data and various techniques of machine learning.

Visualization

Visualization can be a powerful tool for identifying both regularities and irregularities in
data sets. Since this work targets large-scale systems, visualization techniques are
required that can represent large-scale systems and related data at varying degrees of
fidelity as well as enabling techniques in large-scale distributed real-time rendering.
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Research areas include: large-scale visualizations, varying fidelity visualizations, data
fusion visual representations including both cross component and various types (e.g.,
numerical and textual), multiple time-series visualization, distributed real-time rendering.

Data and Information Collection

In order to determine when a failure has occurred, or is anticipated to occur, the detection
and prediction mechanisms require data. The primary difficulty with data and information
collection at extreme scale is the shear volume of platform and application data available.
Research is required to find better ways to prune data, to collect only data which is helpful
in the prediction and detection process, and to find ways to quickly and scalably collect and
store the required data without adversely impacting system performance. To that end,
both in-band and out-of-band data collection techniques should be examined, along with
the hardware and software tools required to perform the collection.

Thrust #4: Monitoring & Control

The topic area of monitoring and control is primarily concerned with determining the
current state of the system (hardware and software) and manipulating that state to
maintain reliable operation. One of the fundamental principles of control theory is that of
observability and controllability (i.e., we cannot hope to control systems that we cannot
adequately observe). Today, this is a large problem in HEC and particularly HPC systems.
Systems have grown to such incredible scale, determining the state of the system has
become very difficult. Today, determining answers to simple questions “is the system up?”,
“Is it stable?”, “is it performing correctly?”, is difficult. Tomorrow, more complex questions
must be answered to achieve system resilience.

The monitoring and control thrust area covers topics that address this question. These
include, but are not limited to, RAS systems, tunable fidelity, quality of service, and
performability.

RAS Systems

RAS systems provide a critical foundation for many, if not all, resilience related efforts. To
meet the goals of HEC the responsibilities shouldered by RAS systems will increase
exponentially. To meet this challenge, improvements to existing RAS systems must be
accomplished in the following areas:

* Component Level Hardware Interfaces - Either by leveraging commodity offerings
in novel ways or by developing new standards in this area, low level sensor and
monitoring interfaces that can maximize out of band monitoring, control and
interaction with platform nodes and other components is essential.

* RAS System Hardware Architecture - Investigation into hardware architectures that
can meet the enormous scale of next generation systems is required to meet
increasing requirements of RAS systems.

* RAS System Software Architecture - New system software architectures must be
developed that can both leverage evolving RAS system hardware architectures and
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provide ubiquitous platform and application information to all stake holders from a
system level standpoint (see Systems Software & Middleware, below)

* RAS Communication Protocols - To achieve the scalability required by future RAS
systems, investigation into new communication protocols appropriate for RAS
system communication is necessary.

* Failure and Resilience Methods - While the primary goal of a RAS system is to
enhance the fault tolerance and resilience of the platform it serves, the scale of RAS
systems required to support future HEC platforms presents a resilience problem of
its own. New fault tolerance methodologies must be developed to enable RAS
systems to meet their own Resilience needs (see Systems Software & Middleware,
below).

In combination or individually these issues must be investigated to achieve resilience for
future HEC systems.

Standards & Standard Framework for Monitoring and Control

Information about, not limited to, the platform (hardware), scheduling system, runtime
system and the application is critical to all aspects of resilience. This information, when
available, is often stored and accessible using widely disparate methods. To achieve the
increasing demand for access to information necessary to meet future resilience goals a
standard method of information mining must be developed.

This interface (possibly an Application Programming Interface API) must standardize the
way in which an increasing number of resilience stake holders can access a growing
amount of information about HEC systems, enabling progress in all resilience thrust areas.
While lower level RAS systems may be vendor specific, this standard would facilitate a
system independent method of obtaining all available information pertaining to the goal of
the inquiry in a system independent manner.

System Software & Middleware

RAS systems software has traditionally been vendor specific and narrowly targeted to
predominantly hardware health monitoring and system control. Future HEC systems will
require significant advances to RAS system software to meet the wide spectrum
requirements implied by resilience needs. From a broad perspective, advances to the
overall RAS system software architecture are necessary to address critical scalability
challenges. A more focused approach might target RAS system communication protocols
and the specific requirements of information sharing, dispersion and retention.

Additionally, new fault tolerance methodologies that address the unique needs of HEC RAS
systems must be developed. The growing numbers of RAS hardware components alone
threaten to impact the reliability of future HEC RAS systems much like component
reliability affects current HEC systems. While some challenges are similar, the specific
purpose served by RAS systems may allow creative approaches to resilience not practical
for the HEC system itself.
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Tunable Fidelity

Tunable fidelity deals with the notion that a system should be able to be configured so that
a varying level of reliability is provided in exchange for something else. Most commonly
this exchange would be for performance or power consumption. The concept of tunable
fidelity is relatively foreign in today’s HPC systems and many HEC systems as well. Most
scientists are uncomfortable with the idea that a computer system would give them
anything but a perfect answer to as many decimal places as they ask. There is need,
however, for research into algorithms and the supporting infrastructure that allow
applications to adjust these “knobs”.

One could envision programming language extensions that, based on observed conditions
or programmer specification, turned down the accuracy of a calculation for a portion not
deemed to need a high degree of accuracy while then increasing it for critical portions.
System software and hardware could automatically put the system into a degraded mode
(control) based on observed conditions (monitor). One simple example of this currently is
the Cell BE processor where SPUs that are overheating (due to proximity to cache, for
instance) can downclock the entire set of SPUs on a chip. It might not be cost effective to
tune this fidelity in complex hardware and software environment. One possible solution
would be to add ECC to all data being processed within the environment. The amount of
ECC would be defined by the user and be a function of the confidence that is needed for the
results of the computation. This method could be used to archive data on disk tuning the
fidelity of the ECC based on the importance of the data.

Quality of Service

There exist very few QoS metrics on HEC systems of today. As mentioned earlier (see
Thrust #2: Enabling Infrastructure — Tools), we do not currently have good measures of the
user experience on a HEC system and it very often differs from platform monitoring
observations. As such, there is a need for research in how to define, determine, and directly
control the QoS of a given system.

Performability

The HEC community is very familiar with performance models that are used to predict and
model the performance of theoretical and existing systems. Today, there is effort in
creating coupled performance / power models. Similarly, the resilience community has a
need for models that include the reliability of these systems. Performability is the term
used to describe this coupling of performance and reliability and today there exists no good
models that can be used for this purpose. System designers need to ask questions like
“how might adding phase change memory to each node in my system effect a given
application’s performance and that application’s reliability?”

More far reaching research is needed in the coupling of performance, reliability, and power.
We foresee a need for models and simulations for these purposes.
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Thrust #5: End-to-End Data Integrity

Data integrity is essential for resilient computing and underpins all aspects of high-end
computing. HEC systems are used to simulate real world phenomena, predict events, and
are critical to national security. It is imperative to have confidence in getting the right
answer and using correct data to make informed decisions. A sub-category of data
integrity deals with the potential malicious modification of data.

There are numerous techniques to ensure data integrity in the face of unreliable
components that have been developed and are available in the literature. Table 2 is one
way to categorize the wide field of data integrity. One observation that comes out of this
taxonomy is that data integrity can be ensured at many different levels of the system stack.
In fact, hybrid approaches where data integrity is assured at different levels of the system
stack in different ways may lead to the most effective solutions.
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Table 2. A taxonomy of techniques for maintaining data integrity

As microprocessors become more and more complex as a result of ever-increasing device
densities and the thirst for higher performance (whether it be single-threaded
performance in the form of more sophisticated core architectures, wider execution units
and SIMD structures or multi-threaded performance in the form of multiple cores and
higher memory bandwidth), the vulnerability to errors, both hard and soft, increases as
well. As a result, data integrity in some form at the hardware level is a necessity. As seen
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in the taxonomy, there exists in the literature today many such techniques that can be
implemented at the hardware level. Each of these solutions comes with a cost in terms of
die area, power, and in some cases performance.

In modern microprocessors, there is an additional dimension to these costs and that is the
cost of development, which includes both design effort and validation time. As
microprocessor complexity increases there are more and more bits in the form of
additional sequentials or micro-architectural structures that must be protected against
errors. As the number of vulnerable bits grows, end-to-end error mitigation solutions
become far more attractive than per-bit or per-structure solutions. End-to-end data
integrity schemes tend to have the ability to protect multiple bits and/or structures,
including entire data and control paths with a single mechanism. This is essential in
keeping the cost of development reasonable, both in terms of manpower and time.

One related question facing us is whether to pay the premiums involved in developing a
custom hardware solution or to accept a lower level of hardware data integrity, perhaps by
applying other data integrity solutions at higher levels of the system stack to make up the
slack at the hardware level, in order to reap the cost benefits using of higher volume,
general purpose components.

Silent Data Corruption

Silent data corruption, SDC, poses a threat to computational science, with several studies
documenting SDC or related problems on real systems [92, 93, 94, 95, 96]. As such it is
imperative that research be undertaken to characterize the impact of SDC on users and that
methods to protect computations from SDC be developed.

While information in the public domain is still relatively scarce, there is some emerging
knowledge. For example, SDC can have multiple causes, e.g. temperature/voltage
fluctuations, particles, manufacturing residuals, oxide breakdown and electrostatic
discharge [21], and will likely be more prevalent in new technologies [20, 97, 98]. From a
statistical perspective, for a given device susceptibility, a platform containing more
replicates of the device is more likely to be affected than one containing fewer replicates. It
is also possible that SDC could affect desktop computers and laptops, with the laptops and
desktops used for scientific computation at an institution perhaps equivalent to a cluster
[99].

Thus, from an operational perspective there is an urgent need for answers to questions
such as the following:

¢ What is the probability that a code that runs for h hours on n nodes on a particular
platform gets the wrong answer? How does this depend on which code is running?

*  Whatis the probability that if [ write my data to disk and then read it back again, I
get the same results?

* What operational strategies can mitigate the impact of SDC on users?

Answering these operational questions will require fundamental research focused on both
characterizing SDC and the faults that can lead to SDC and resilience methods for mitigating
the impact of SDC on applications.
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Conclusions

There is an pressing need for more focused and complete government investment in the
area of HEC Resilience, given the growing impact of errors on today’s extreme scale
systems and the projected trends for the systems of tomorrow. Resilience has henceforth
received too little attention and funding in the research community, as compared to other
elements of HEC. This deficiency is at least in part because of the magnitude of the
challenges to be overcome and the difficulty in making progress in any one aspect of the
problem without simultaneous advances in the other key thrust areas. The wide range of
basic research that must be coordinated over the multiple thrust areas that make up the
field of HEC resilience in order to make meaningful progress complicates the challenge.

Thus we find that from resilience computing theory to the enabling infrastructure that
employs it and from accurate prediction and detection of faults to monitoring and control
of the systems encountering those faults there exists a critical need for resilience research.
And finally, there is the underpinning of data integrity, which impacts all HEC systems and
threatens to undermine the integrity of the information, derived from HEC data that drives
government policy and protects national security. In order for our nation to make effective
use of high-end computing in the next decade and maintain crucial national preeminence in
the field of HEC there is little doubt that resilience concerns must become a research
priority. A coordinated, multi-thrust approach of basic research, tool development and
data analysis as outlined in this report will be required to meet the challenge.
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